Fracture Analysis of Notched Sandwich Composites Applying Whitney-Nuismer Mathematical Model

Elsayed A. Elbadry
Mining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Egypt

The main objective of this research is to investigate the fracture analysis of jute sandwich composites with 32 Vol% fiber weight content fabricated by modifying the hand lay-up technique with resin pre-impregnation into the jute fiber in the vacuum. This was carried out through open hole tension test with different ratios of the specimen width, \(W \) to hole diameter (\(D = 10.2 \) mm) with three different values (1.7, 2.3, 3) using the characteristic distance (\(d_0 \)) principle based on the microstructure of these composites applying Whitney-Nuismer mathematical model. Therefore in this work, the physical meaning of \(d_0 \) was validated for different \(W/D \) ratios through the microstructure of the composites based on the calculated \(d_0 \). This was carried out through calculating and comparing the fiber pull out lengths from hole side up to \(d_0 \) and from \(d_0 \) to the end side of the specimen. The results showed that the average fiber pull out length was shorter after the crack reaches \(d_0 \) than that over the characteristic distance \(d_0 \) which validated and confirmed that after the crack reaches \(d_0 \) the brittle fracture has been occurred.