Metal Oxide Nanoparticles: Synthesis in Hydrocarbon Flames and Their Applications in Solar Cells

Zulkhair Mansurov¹, Moldir Auyelkhankyzy¹, Nikolay Prikhodko¹,² and Bakhytzhan Lesbayev¹

¹Institute of Combustion Problems, Almaty, Kazakhstan
²Almaty University of Energetics and Communications, Almaty, Kazakhstan

This paper presents the results of investigation the synthesis of metal oxide nanoparticles in hydrocarbon flames and their application for improving the efficiency of solar cells.

Metal oxide nanoparticles have synthesized on the nichrome wires in thickness of 3 mm in the diffusion counter-flow propane-oxygen (φ=1) flame. The X-ray spectroscopy shows the component of the nichrome wire: nickel (70 %), iron (21 %) and chrome (8.72 %). The investigation of the influence processing time of the wire in flame show that with increase processing time of the wire in flame rising the size of metal oxide nanoparticles. The flame treatment of the wire in during the 5 seconds led to synthesis of metal oxides nanoparticles with size of 70 nm. The flame treatment of the wire in during the 5 and 10 minutes led to synthesis of chrome (III) oxide (Cr₂O₃) and metal oxides (NiO, Ni₂O₃, Cr₂O₃, Fe₂O₃, and FeO) nanoparticles with size of 300 and 700 nm, respectively.

It was studied the influence the synthesized metal oxides nanoparticles with different size to increasing the efficiency of solar cells. The result of investigation show that coating the surface of the silicon solar cell with size of nanoparticles of metal oxide 300 nm led to increase the output load voltage up to 4-7%, short-circuit current up to 20-28%, which in the aggregate resulted in increased efficiency of solar cells by 2-3%.

It has proposed the theoretical analysis of the mechanism of the influence of metal oxide nanoparticles to increase the efficiency of the solar cell.

Biography: